(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
dbl1(0) → 01
dbl1(s(X)) → s1(s1(dbl1(X)))
sel1(0, cons(X, Y)) → X
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
quote(0) → 01
quote(s(X)) → s1(quote(X))
quote(dbl(X)) → dbl1(X)
quote(sel(X, Y)) → sel1(X, Y)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DBL(s(X)) → DBL(X)
DBLS(cons(X, Y)) → DBL(X)
DBLS(cons(X, Y)) → DBLS(Y)
SEL(s(X), cons(Y, Z)) → SEL(X, Z)
INDX(cons(X, Y), Z) → SEL(X, Z)
INDX(cons(X, Y), Z) → INDX(Y, Z)
FROM(X) → FROM(s(X))
DBL1(s(X)) → DBL1(X)
SEL1(s(X), cons(Y, Z)) → SEL1(X, Z)
QUOTE(s(X)) → QUOTE(X)
QUOTE(dbl(X)) → DBL1(X)
QUOTE(sel(X, Y)) → SEL1(X, Y)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
dbl1(0) → 01
dbl1(s(X)) → s1(s1(dbl1(X)))
sel1(0, cons(X, Y)) → X
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
quote(0) → 01
quote(s(X)) → s1(quote(X))
quote(dbl(X)) → dbl1(X)
quote(sel(X, Y)) → sel1(X, Y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 8 SCCs with 4 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL1(s(X), cons(Y, Z)) → SEL1(X, Z)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
dbl1(0) → 01
dbl1(s(X)) → s1(s1(dbl1(X)))
sel1(0, cons(X, Y)) → X
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
quote(0) → 01
quote(s(X)) → s1(quote(X))
quote(dbl(X)) → dbl1(X)
quote(sel(X, Y)) → sel1(X, Y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL1(s(X), cons(Y, Z)) → SEL1(X, Z)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- SEL1(s(X), cons(Y, Z)) → SEL1(X, Z)
The graph contains the following edges 1 > 1, 2 > 2
(9) YES
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DBL1(s(X)) → DBL1(X)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
dbl1(0) → 01
dbl1(s(X)) → s1(s1(dbl1(X)))
sel1(0, cons(X, Y)) → X
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
quote(0) → 01
quote(s(X)) → s1(quote(X))
quote(dbl(X)) → dbl1(X)
quote(sel(X, Y)) → sel1(X, Y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DBL1(s(X)) → DBL1(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- DBL1(s(X)) → DBL1(X)
The graph contains the following edges 1 > 1
(14) YES
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE(s(X)) → QUOTE(X)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
dbl1(0) → 01
dbl1(s(X)) → s1(s1(dbl1(X)))
sel1(0, cons(X, Y)) → X
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
quote(0) → 01
quote(s(X)) → s1(quote(X))
quote(dbl(X)) → dbl1(X)
quote(sel(X, Y)) → sel1(X, Y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(16) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(17) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE(s(X)) → QUOTE(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(18) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- QUOTE(s(X)) → QUOTE(X)
The graph contains the following edges 1 > 1
(19) YES
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(X) → FROM(s(X))
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
dbl1(0) → 01
dbl1(s(X)) → s1(s1(dbl1(X)))
sel1(0, cons(X, Y)) → X
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
quote(0) → 01
quote(s(X)) → s1(quote(X))
quote(dbl(X)) → dbl1(X)
quote(sel(X, Y)) → sel1(X, Y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(X) → FROM(s(X))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
FROM(
X) →
FROM(
s(
X)) we obtained the following new rules [LPAR04]:
FROM(s(z0)) → FROM(s(s(z0)))
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(s(z0)) → FROM(s(s(z0)))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(25) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
FROM(
s(
z0)) →
FROM(
s(
s(
z0))) we obtained the following new rules [LPAR04]:
FROM(s(s(z0))) → FROM(s(s(s(z0))))
(26) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(s(s(z0))) → FROM(s(s(s(z0))))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(27) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
FROM(
s(
s(
z0))) evaluates to t =
FROM(
s(
s(
s(
z0))))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [z0 / s(z0)]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from FROM(s(s(z0))) to FROM(s(s(s(z0)))).
(28) NO
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL(s(X), cons(Y, Z)) → SEL(X, Z)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
dbl1(0) → 01
dbl1(s(X)) → s1(s1(dbl1(X)))
sel1(0, cons(X, Y)) → X
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
quote(0) → 01
quote(s(X)) → s1(quote(X))
quote(dbl(X)) → dbl1(X)
quote(sel(X, Y)) → sel1(X, Y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(30) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL(s(X), cons(Y, Z)) → SEL(X, Z)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(32) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- SEL(s(X), cons(Y, Z)) → SEL(X, Z)
The graph contains the following edges 1 > 1, 2 > 2
(33) YES
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → INDX(Y, Z)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
dbl1(0) → 01
dbl1(s(X)) → s1(s1(dbl1(X)))
sel1(0, cons(X, Y)) → X
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
quote(0) → 01
quote(s(X)) → s1(quote(X))
quote(dbl(X)) → dbl1(X)
quote(sel(X, Y)) → sel1(X, Y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(35) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → INDX(Y, Z)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(37) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- INDX(cons(X, Y), Z) → INDX(Y, Z)
The graph contains the following edges 1 > 1, 2 >= 2
(38) YES
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DBL(s(X)) → DBL(X)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
dbl1(0) → 01
dbl1(s(X)) → s1(s1(dbl1(X)))
sel1(0, cons(X, Y)) → X
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
quote(0) → 01
quote(s(X)) → s1(quote(X))
quote(dbl(X)) → dbl1(X)
quote(sel(X, Y)) → sel1(X, Y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(40) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(41) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DBL(s(X)) → DBL(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(42) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- DBL(s(X)) → DBL(X)
The graph contains the following edges 1 > 1
(43) YES
(44) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DBLS(cons(X, Y)) → DBLS(Y)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
dbl1(0) → 01
dbl1(s(X)) → s1(s1(dbl1(X)))
sel1(0, cons(X, Y)) → X
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
quote(0) → 01
quote(s(X)) → s1(quote(X))
quote(dbl(X)) → dbl1(X)
quote(sel(X, Y)) → sel1(X, Y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(45) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(46) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DBLS(cons(X, Y)) → DBLS(Y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(47) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- DBLS(cons(X, Y)) → DBLS(Y)
The graph contains the following edges 1 > 1
(48) YES